学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20190615 梁鑫 Nearly Optimal Stochastic Approximation for Online Principal Subspace Estimation

发布时间:2019-06-12 11:36    浏览次数:    来源:

TitleNearly Optimal Stochastic Approximation for Online Principal Subspace Estimation

报告人:梁鑫(清华大学)

时间:2019.06.15上午9:50-10:30

地点:数学院203报告厅

Abstract: Processing streaming data as they arrive is often necessary for high dimensional data analysis. In this talk, we analyze the convergence of a subspace online PCA iteration. Under the sub-Gaussian assumption, we obtain the finite-sample error bound that closely matches the minimax information lower bound by Vu and Lei [Ann. Statist. 41:6(2013), 2905-2947]. The case for the most significant principal component only, was solved by Li, Wang, Liu, and Zhang [Math. Program., Ser. B, 167:1(2018), 75-97], but a straightforward extension of their proofs, however, does not seem to work for the subspace case. People may see matrix analysis plays an important role in generalizing results for one-dimensional case to those for multi-dimensional case.

 

必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]