报告题目: Infinitely many solutions to the isentropic system of gas dynamics
报告人:俞成 教授(佛罗里达大学)
邀请人:熊林杰
时间:2021/5/6(周四) 上午9:00-10:00(北京时间)
地点:腾讯会议室ID:476 733 093
摘要:In this talk, I will discuss the non-uniqueness of global weak solutions to the isentropic system of gas dynamics. In particular, I will show that for any initial data belonging to a dense subset of the energy space, there exists infinitely many global weak solutions to the isentropic Euler equations for any $1<\gamma\leq 1+2/n$. The proof is based on a generalization of convex integration techniques and weak vanishing viscosity limit of the Navier-Stokes equations. This talk is based on the joint work with M. Chen and A. Vasseur.
报告人简介:俞成,男,美国佛罗里达大学数学系助理教授。2013年8月在匹兹堡大学获博士学位,主要研究流体力学方程组的数学理论,特别在弱解,熵(弱)解方面取得一系列重要研究成果,在本领域国际知名数学期刊发表论文多篇,涵盖数学顶级期刊Invent. Math., JEMS, ARMA, JMPA等。