学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20210529 凌晨 Adaptive multi-dimensional low-rank balance methods fort ensor completion problems

发布时间:2021-05-27 17:12    浏览次数:    来源:

报告题目:Adaptive multi-dimensional low-rank balance methods fort ensor completion problems


报告人:凌晨教授(杭州电子科技大学理学院)


时间:2021年5月29日(周六)上午10:00-11:00


地点:必赢76net线路唯一官方网站425报告厅


邀请人:白敏茹


摘要: This paper proposes two tensor product based approaches to tensor completion, which recovers missing entries of data represented by tensors. The proposed approaches are based on the tensor singular-value decomposition and the related tensor tubal rank, which are able to capture hidden information from tensors thanks to the balanced consideration of multi-dimensional low-rank features. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solutions. Some computational results for color images, multi-spectral images, videos, and magnetic resonance imaging data recovery show that our approaches perform better than some existing state-of-the-art tensor-based completion methods.


专家简介:
凌晨,杭州电子科技大学理学院教授,博士生导师。现任中国运筹学会理事、中国运筹学会数学规划分会副理事长、中国经济数学与管理数学研究会副理事长、浙江省数学会常务理事、国际ESI期刊 Pacific Journal of Optimization编委、国际期刊Statistics,Optimization & Information Computing编委,国家自然科学基金委数理科学部评审专家。研究方向:非线性规划、变分不等式与互补问题、张量计算、多变量多项式优化、半无限规划、随机规划、多目标优化理论与应用等。近十年来,主持国家自科基金和浙江省自科基金各4项、其中省基金重点项目1项。在国内外重要刊物发表论文70余篇,其中SCI期刊论文50余篇,多篇发表在Math. Program.、SIAM J. on Optim.和 SIAM J.on Matrix Anal.and Appl.、COAP、JOTA、JOGO等。

必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]