报告题目:The Lp surface area measure and related Minkowski problem for log-concave functions
报告人:叶德平 (Memorial University, 加拿大)
时间: 2021/11/8( 周一 ), 20:00-21:00(北京时间)
腾讯会议:291 862 127
邀请人:方牛发
摘要:Recent years have witnessed the great development of geometrization of log-concave functions. In particular, many fundamental results in convex geometry have found their functional lifting, including the surface area measure, the Minkowski problem, and the Lp affine surface areas etc. However, the fundamental Lp framework of log-concave functions is still missing.
In this talk, I will present our newly proposed Lp addition of log-concave functions--the Lp Asplund sum of log-concave functions, talk about the Lp surface area measures for log-concave functions, discuss related Minkowski type problems, and explain our solutions to this
Minkowski type problem for log-concave functions. The talk is based on the joint work with N. Fang and S. Xing.
报告人简介:Professor Deping Ye 于2009年博士毕业于美国Case Western Reserve University, 现任职于加拿大Memorial University, 并主持加拿大国家自然科学基金(NSERC) 项目。获得2017年JMAA Ames奖。 长期从事凸几何分析, 几何和泛函不等式, 随机矩阵, 量子信息理论和统计学等领域的研究。 已在 Comm.Pure Appl. Math., Adv. Math., Math. Ann., Proc. London Math.Soc., CVPDE等国际著名杂志上发表论文30多篇。 主要贡献包括一系列重要的仿射等周不等式,开创了dual Orlicz-Brunn-Minkowski理论的研究,首次提出了general dual Orlicz-Minkowski问题, 并解决了著名的爱因斯坦“远处飘忽不定的幽灵”的普遍存在性这一长久未解决的难题。