报告题目:Gevrey regularity of the weak solutions to the Boltzmann equations without cut-off
报告人:李维喜教授(武汉大学数学与统计学院)
时间:11月19日16:00-17:00(北京时间)
腾讯会议:503 327 312(无密码)
摘要:We consider the spatially inhomogeneous Boltzmann equation without angular cutoff and prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with Gevrey index depending on the angular singularity. For the proof we treat in a subtle way the commutator between the regularization operators and the Boltzmann collision operator involving rough coefficients, and this enables us to combine the classical Hörmander's hypoelliptic techniques together with the global symbolic calculus established for the linearized Boltzmann operator so as to improve the regularity of solutions at positive time.
报告人简介:李维喜,武汉大学数学与统计学院教授、博士生导师, 主要从事偏微分方程和数学物理方程的研究,特别是在流体力学方程的边界层理论,退化椭圆方程的正则性,以及谱分析等方面做出了一系列出色的工作,研究成果发表在Communications on Pure and Applied Mathematics、Journal of the European Mathematical Society、Advances in Mathematics等期刊上。曾主持国家优秀青年基金、霍英东教育基金、国际(地区)合作与交流项目等国家基金项目,目前担任Discrete and Continuous Dynamical Systems - Series B 期刊编委。