学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20220414 陈化 Eigenvalue Problems for Degenerate Elliptic Operators on Non-equiregular Sub-Riemannian Manifolds

发布时间:2022-04-03 09:15    浏览次数:    来源:

报告题目:Eigenvalue Problems for Degenerate Elliptic Operators on Non-equiregular  

         Sub-Riemannian Manifolds

报告人:陈化

邀请人:黄勇  

工作单位:武汉大学

时间:2022年4月14日(星期四)下午3:00-4:00

腾讯会议号:577-394-498


摘要:    In this talk, we shall report on recent results on an eigenvalue problem for


self-adjoint Hormander operators on non-equiregular sub-Riemannian manifolds.


Using the Rayleigh-Ritz formula and the sub-elliptic heat kernel estimates, we


establish the upper bounds of eigenvalues which depend on the volume of subunit


ball and the measure of the manifold. Under a certain condition, we obtain the explicit


upper bounds of eigenvalues which have the polynomial growth in k with the optimal


order related to the non-isotropic dimension of the manifold.


必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]