学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20220426 陈露 Sharp Trudinger-Moser inequality and bubbling analysis for its positive critical point

发布时间:2022-04-25 15:28    浏览次数:    来源:

报告题目:Sharp Trudinger-Moser inequality and bubbling analysis for its positive critical point

报告人: 陈露

工作单位:北京理工大学

时间:    2022年4月26日(星期)上午9:00-10:00

地点:    腾讯会议 会议号324-438-681  密码:220426

邀请人:李沁峰


摘要: Trudinger-Moser inequalities as the border line case of Sobolev inequalities have important applications in the fields of geometric analysis and PDEs. In this talk, I will give a survey about the history of Trudinger-Moser inequality and its important role in prescribing curvature problem and Schrodinger-equation with the critical exponential growth.  Then I will present some new progress on sharp Trudinger-Moser inequalities including Trace Trudinger-Moser inequalities, Trudinger-Moser involving degenerate potential and affine Trudinger-Moser inequalities, etc. Finally, Quantization theory for the critical point of Trudinger-Moser functional in compact manifold and non-compact manifold will also discussed in this talk.



报告人简介: 陈露,北京理工大学副研究员,在Adv. Math.Calc. Var. Partial Differential EquationsJ. Funct. Anal.Trans. AMS Pacific J. Math等国际知名期刊上发表论文



必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]