报告题目:Structure-preserving arbitrary Lagrangian-Eulerian high order methods for hyperbolic conservation law with source term
报告人:徐岩 教授(中国科学技术大学数学科学学院)
邀请人:宋怀玲
时间:6月2日14:00-15:00
腾讯会议:842-372-575(无密码)
报告摘要:This paper develops the structure-preserving discontinuous Galerkin methods and finite volume weighted essentially non-oscillatory (WENO) hybrid schemes for the hyperbolic conservation laws with source term under the arbitrary Lagrangian-Eulerian (ALE) framework, which can preserve a general hydrostatic equilibrium state and positivity-preserving property under a suitable time step at the same time. Such equations mainly include the shallow water equations with non-flat bottom topography and the Euler equations with gravitation. By introducing well-balanced numerical fluxes and corresponding source term approximations, we established well-balanced schemes on moving mesh. We also discuss about the weak positivity property of the proposed schemes, and the positivity-preserving limiter can be applied to effectively enforce the positivity-preserving property. Numerical examples have been provided not only to demonstrate the good properties but also to show the advantages on moving mesh.
报告人简介:
徐岩,中国科学技术大学数学科学学院教授。2005年于中国科学技术大学数学系获计算数学博士学位。2005-2007年在荷兰Twente大学从事博士后研究工作。2009年获得德国洪堡基金会的支持在德国Freiburg大学访问工作一年。主要研究领域为高精度数值计算方法。2008年度获全国优秀博士学位论文奖,2017年获国家自然科学基金委“优秀青年基金”。徐岩教授入选了教育部新世纪优秀人才计划,主持国家自然科学基金面上项目、德国洪堡基金会研究组合作计划(Research Group Linkage Programme)、霍英东青年教师基础研究课题等科研项目。担任Journal of Scientific Computing, Advances in Applied Mathematics and Mechanics, Communication on Applied Mathematics and Computation、计算物理等杂志的编委。