关于举行耿俊、赖柏顺、王勇三位教授的学术报告的通知
学术报告(一)
报告题目:$W^{\ell,p}$ Solvability for Higher Order Elliptic Equations on Nonsmooth Domains
报告人:耿俊教授(兰州大学)
时间:7月23日11:00-12:00(北京时间)
地点:必赢76net线路唯一官方网站425
摘要:For higher order inhomogeneous elliptic systems (polyharmonic equations and biharmonic equations) with real constant coefficients on a bounded Lipschitz domain, we investigate sufficient conditions that the ranges of $p$ must satisfy in order for the $W^{\ell,p}$ estimates for weak solutions of Dirichlet problems to be true.
报告人简介:耿俊,2011年获美国肯塔基大学博士学位,国家青年高层次人才入选者,现任兰州大学教授、博士生导师。主要从事非光滑区域上的椭圆边值问题和均匀化理论的研究。先后主持国家自然科学基金青年基金1项,面上项目2项。在SIAM J. Math. Anal.、 Arch. Ration. Mech. Anal.、Anal. PDE、J. Differential Equations、Proc. Amer. Math. Soc.、J. Funct. Anal.、Indiana Univ. Math. J.、Adv. Math..等国内外重要期刊发表多项高质量研究成果。
学术报告(二)
报告题目:Self-similar solutions and the blow-up rate of the potential singularity of the incompressible N-S Equations
报告人:赖柏顺教授(湖南师范大学)
时间:7月23日10:00-11:00(北京时间)
地点:必赢76net线路唯一官方网站425
摘要:我们主要介绍自相似解与奇异解临界范数爆破速度之间的关系,以及这方面的最新结果,以及与之关联的广义 Leray 方程弱解的正则性结果(临界情形)。
报告人简介:赖柏顺,湖南师范大学数学与统计学院教授,主要研究领域为三维不可压缩 Navier-Stokes 方程的数学理论,主持国家自然科学基金3项,湖南省杰出青年基金,其工作主要发表在 Science China Mathematics,Advances in Mathematics,Trans. Amer. Math. Soc. 等期刊。
学术报告(三)
报告题目:Global Solutions of the Compressible Euler-Poisson Equations with Large Initial Data of Spherical Symmetry
报告人:王勇研究员(中科院数学与系统科学研究院)
时间:7月23日9:00-10:00(北京时间)
地点:必赢76net线路唯一官方网站425
摘要:We are concerned with a global existence theory for finite-energy solutions of the multidimensional Euler-Poisson equations for both compressible gaseous stars and plasmas with large initial data of spherical symmetry. One of the main challenges is the strengthening of waves as they move radially inward towards the origin, especially under the self-consistent gravitational field for gaseous stars. A fundamental unsolved problem is whether the density of the global solution forms a delta measure (i.e., concentration) at the origin. To solve this problem, we develop a new approach for the construction of approximate solutions as the solutions of an appropriately formulated free boundary problem for the compressible Navier-Stokes-Poisson equations with a carefully adapted class of degenerate density-dependent viscosity terms, so that a rigorous convergence proof of the approximate solutions to the corresponding global solution of the compressible Euler-Poisson equations with large initial data of spherical symmetry can be obtained. Even though the density may blow up near the origin at a certain time, it is proved that no delta measure (i.e., concentration) in space-time is formed in the vanishing viscosity limit for the finite-energy solutions of the compressible Euler-Poisson equations for both gaseous stars and plasmas in the physical regimes under consideration.
报告人简介:王勇研究员2012年博士毕业于中科院数学与系统科学研究院,现任中科院数学与系统科学研究院副研究员。主要研究非线性双曲守恒律、可压缩Navier-Stokes方程、Boltzmann方程等方程的适定性和流体动力学极限。公开发表SCI论文20余篇,主要论文发表在CPAM、 Adv. Math.、Arch. Ration. Mech. Anal.和 SIAM J. Math. Anal.、等国际著名刊物上。曾获中科院数学与系统科学研究院“重要科研进展奖、入选中科院数学与系统科学研究院“陈景润未来之星”计划、入选中科院青年创新促进会。目前主持国家自然科学基金面上项目一项,2020年获国家优秀青年科学基金资助。