学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20230209 何凌冰 Regularity estimates for the non-cutoff soft potential Boltzmann equation with rough and slowly decaying data

发布时间:2023-02-08 08:51    浏览次数:    来源:

报告题目:Regularity estimates for the non-cutoff soft potential Boltzmann equation with rough and slowly decaying data

报告人:何凌冰教授(清华大学)

邀请人:熊林杰

时间:29日(周四)16:00-1700(北京时间)

地点:必赢76net线路唯一官方网站425

摘要:Following the work of Caffarelli-Kohn-Nirenberg, we call a point to be a regular one of the weak solution $f=f(t,x,v)$ to the non-cutoff Boltzmann equation if $f$ is essentially bounded in a neighborhood of this point. Generally it should imply that $f$ is indeed $C^\infty_{x,v}$ in a smaller neighborhood. In the present talk, we show that the above assertion is very subtle for the Boltzmann equation because of the degenerate property and the non-local property of the collision operator. We demonstrate it via three steps: (i). Construct so-called typical rough and slowly decaying data; (ii). Prove that such kind of the data will induce the finite smoothing effect in Sobolev spaces; (iii). Prove that this finite smoothing effect property will induce the following local properties: Leibniz rule does not hold for high derivatives (even in the weak sense) and the discontinuities.

报告人简介:何凌冰,清华大学数学系教授。主要研究方向为流体力学中的Navier-StokesMHD等方程组以及统计物理中的Boltzmnn方程。近五年先后在 Ann. Sci. Éc. Norm. Supér.Archive for Rational Mechanics and AnalysisCommunications in Mathematical PhysicsSIAM Journal on Mathematical AnalysisJournal of Functioal AnalysisJournal of Differential EquationsJ. Stat. Phys.等国际主流数学杂志发表论文多篇。




必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]