学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20200612 傅士硕 Bijective recurrences for Schr\"oder triangles and Comtet statistics

发布时间:2020-06-09 16:19    浏览次数:    来源:

题目:Bijective recurrences for Schr\"oder triangles and Comtet statistics
报告人: 傅士硕博士,重庆大学
时间:2020/6/12(周五)15:30-16:30
腾讯会议ID:648 265 758
Abstract:
Let $r(n,k)$ (resp. $s(n,k)$) be the number of Schr\"oder paths (resp. little Schr\"oder paths) of length $2n$ with $k$ hills, and set $r(0,0)=s(0,0)=1$. In this talk, we bijectively establish the following recurrence relations:
\begin{align*}
r(n,0)&=\sum\limits_{j=0}^{n-1}2^{j}r(n-1,j),\quad n\geq 1,\\
r(n,k)&=r(n-1,k-1)+\sum\limits_{j=k}^{n-1}2^{j-k}r(n-1,j),\quad 1\le k\le n,\\
s(n,0) &=\sum\limits_{j=1}^{n-1}2\cdot3^{j-1}s(n-1,j),\quad n\geq 1,\\
s(n,k) &=s(n-1,k-1)+\sum\limits_{j=k+1}^{n-1}2\cdot3^{j-k-1}s(n-1,j),\quad 1\le k\le n.
\end{align*}
On the other hand, it is well-known that the large Schr\"oder numbers also enumerate separable permutations. This propelled us to reveal the connection with a lesser-known permutation statistic, called initial ascending run (iar), whose distribution on separable permutations is shown to be given by $[r(n,k)]_{n,k\ge 0}$ as well. A by-product of this result is that $\iar$ is equidistributed over separable permutations with $\comp$, the number of components of a permutation. We call such statistics Comtet and we shall discuss further work concerning Comtet statistics on various classes of pattern avoiding permutations if time permits.

报告人介绍: 傅士硕,2011年博士毕业于美国宾夕法尼亚州州立大学,2011年-2012年在韩国韩国科学技术院(KAIST)从事博士后研究工作,现为重庆大学数学与统计学院特聘研究员、博士生导师。研究的主要兴趣是计数组合学、q-级数以及整数分拆理论。

必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]