学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20200622 郭龙 Newton Polytopes of Polynomials in Algebraic Combinatorics

发布时间:2020-06-16 10:18    浏览次数:    来源:

『组合数学』学术报告(五)
题目:Newton Polytopes of Polynomials in Algebraic Combinatorics
报告人:郭龙副教授,南开大学
时间:2020/6/22(周一)14:00-15:00
腾讯会议ID:385 492 653
摘要:In this talk, we shall discuss the Newton polytopes of
several important families of polynomials in algebraic
combinatorics, including for example Schubert polynomials,
Grothendieck polynomials, key polynomials. We develop
a combinatorial algorithm to generate the vertices of
the Newton polytopes of Schubert and key polynomials.
As an application, we show that the vertices of the Newton polytope of a key polynomial can be generated by permutations in a  Bruhat order interval, confirming a conjecture by Monical, Tokcan and Yong. This work is joint with Neil J.Y. Fan.

必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]