【最优化】系列学术报告
报告题目:Analytical expressions of Positive Definiteness for 4th order symmetric tensors and its Applications
报告人:宋义生教授,重庆师范大学
报告时间:2020年12月16日 周三 20:50-21:50
腾讯会议ID: 846 440 825
摘要:In particle physics, the vacuum stability of scalar potentials is equivalent to check positive definiteness (or copositivity) of its coupling tensors, and such a coupling tensor is a 4th order and symmetric tensor. In this talk, we mainly discuss precise analytical expressions of positive definiteness of 4th order tensors. More specifically, we present
(i) a necessary and sufficient condition of positive definiteness for 4th order 2 dimensional symmetric tensors;
(ii) two sufficient conditions for the positive definiteness of 4th order 3 dimensional symmetric tensors;
(iii) a necessary and sufficient condition of Positive Definiteness for a special 4th order 3-dimension symmetric tensor defined by Mathematical Models in Particle Physics.
These conclusions may be applied to test and to verify the vacuum stability of general scalar potentials of two real singlet scalar fields and the Higgs boson.
个人简介:
宋义生,曾任河南师范大学特聘教授,博士生导师,河南省运筹学会常务理事, 于2020年6月到重庆师范大学任教, 2006年4月至2020年6月在河南师范大学任教,2006年在天津工业大学获得理学硕士学位,2013年在香港理工大学取得博士学位。主要从事高阶张量理论与方法、非线性分析等方面的研究,在特殊结构张量理论、张量互补问题解的特性及张量齐次算子理论研究等方面取得了一些研究成果。目前已在在“SIAM Journal on Matrix Analysis and Applications”、“Journal of Global Optimization”、“Journal of Optimization Theory and Applications”、“Comput Optim Appl.”、“Nonlinear Analysis”等国内外著名数学杂志上发表学术论文95篇,其中SCI收录论文84篇,包括9篇ESI高被引论文(包括3篇同时也为2016年与2019年热点论文), 曾获天津市自然科学三等奖,河南省自然科学--优秀论文一等奖.