报告题目:Littlewood-Paley estimates for weighted Bergman spaces
报告人: 鲍官龙
报告时间:8月2号(周一)下午3:00-4:00
腾讯会议ID:775 531 518 密码:0802
邀请人:罗率兵
摘要:In this talk, we consider the following Littlewood-Paley estimates for weighted Bergman spaces: for $p>0$, characterize positive weight functions $\omega(z)$ on the unit disk $\mathbb{D}$ such that
$$\int_\mathbb{D} |f(z)|^p \omega(z) dA(z)<\infty$$
if and only if
$$\int_\mathbb{D} |f'(z)|^p (1-|z|^2)^p \omega(z) dA(z)<\infty,$$
where $f$ is analytic in $\mathbb{D}$ and $dA$ is the area measure on $\mathbb{D}$. A complete solution to this problem is still lacking. We will talk about some results and applications of these Littlewood-Paley estimates.
报告人简介:鲍官龙,汕头大学数学系副教授。2014年博士毕业于汕头大学。研究领域为复分析、泛函分析及其应用,主要研究解析函数空间及相关算子理论。主持国家自然科学基金青年科学基金等项目。学术论文发表于Canad. J. Math., J. Geom. Anal., Proc. Amer. Math. Soc.等刊物。
欢迎大家参加。