学术报告
您现在的位置: 首页 > 科学研究 > 学术报告 > 正文

20211215 乔中华 Generalized SAV­exponential integrator schemes for Allen­Cahn type gradient flows

发布时间:2021-11-24 08:59    浏览次数:    来源:

报告时间: 2021 12 15 16:00–17:30

报告地点:腾讯会议 


议 号: 901­733­120


邀请人宋怀玲


摘要:

The energy dissipation law and the maximum bound principle (MBP) are two important physical features of the well­known Allen­Cahn equation. While some commonly­used first­order time stepping schemes have turned out to preserve unconditionally both energy dissipation law and MBP for the

equation, restrictions on the time step size are still needed for existing second­order or even higher­order schemes in order to have such simultaneous preservation. In this paper, we develop and analyze novel first­ and second­order linear numerical schemes for a class of Allen­Cahn type gradient flows. Our schemes combine the generalized scalar auxiliary variable (SAV) approach and the exponential time

integrator with a stabilization term, while the standard central difference stencil is used for discretization of the spatial differential operator. We not only prove their unconditional preservation of the energy dissipation law and the MBP in the discrete setting, but also derive their optimal temporal error estimates under fixed spatial mesh. Some experiments are also carried out to numerically illustrate the properties

and performance of the proposed schemes.

报告人简介:

乔中华,香港理工大学教授。2006 年在香港浸会大学获得博士学位。主要从事数值微分方程方面算法设计及分析,特别是相场方程的数值模拟及计算流体力学的高效算法。至今在 SIAM RevSIAM J.Numer.AnalSIAM J. Sci CompNumer MathMath CompJ. Comp Phys 等计算数学 顶级期刊上发表学术论文 60 余篇,文章被合计引用 1200 余次。2013 获香港研究资助局颁发的杰出青年学者奖,2018 年获得香港数学会青年学者奖,2020 年获得香港研究资助局研究学者奖。


 poster_乔中华.pdf

  • 附件【poster_乔中华.pdf】已下载

必赢76net线路(中国)唯一官方网站-Official Mobile Platform版权所有©2017年    通讯地址:湖南省长沙市岳麓区麓山南路麓山门     邮编:410082     Email:xiaoban@hnu.edu.cn
域名备案信息:[www.hnu.edu.cn,www.hnu.cn/湘ICP备]      [hnu.cn 湘教QS3-200503-000481 hnu.edu.cn  湘教QS4-201312-010059]