报告题目: Regularity criteria for weak solutions to the 3d co-rotational Beris-Edwards system via the pressure
报告人:刘桥 副教授(中南大学)
时间:2021年11月26日 (周五), 10:40-11:40 (上午)
地点:425
邀请人:周建丰
报告摘要: In this talk, we investigate regularity criteria for weak solutions to the Cauchy problem of the 3d co-rotational Beris-Edwards system for nematic liquid crystals, which couples the Navier--Stokes equations for the fluid velocity $\bu$ with an evolution-diffusion equations for the $Q$-tenser. Our results yield that for any positive constant $\gamma >0$, if either the negative part of the associated pressure $\Pi$ satisfies
\begin{align*}
\Pi_{-} [\ln(1+\Pi_{-})]^{1+\gamma} \in L^{\infty}(\mathbb{R}_+; L^{\frac{3}{2},\infty}(\mathbb{R}^3)),
\end{align*}
or the quantity
$ 2\Pi +|\bu|^{2}+|\nabla Q|^{2}$ satisfies
\begin{align*}
(2\Pi_{+}+|\bu|^2+|\nabla Q|^2) [\ln(1+2\Pi_{+}+|\bu|^2+|\nabla Q|^2)]^{1+\gamma} \in L^{\infty}(\mathbb{R}_+; L^{\frac{3}{2},\infty}(\mathbb{R}^3)),
\end{align*}
then the weak solution $(\bu,Q)$, to the 3d co-rotational Beris-Edwards system, is global-in-time smooth. Here, the subscript ``$-$" and ``$+$" denote the negative and the nonnegative part, respectively. $L^{\frac{3}{2},\infty}(\mathbb{R}^3)$ denotes the standard weak Lebesgue space. If $Q\equiv \mathbf{0}$, then our results extend some previous known results from the theory of the 3d Navier--Stokes equations.
报告人简介:刘桥,现为中南大学数学与统计学院副教授,于2012年获中山大学博士学位;2014年-2016年在北京应用物理与计算数学研究所从事博士后研究工作;2017年8月-2018年8月访问普渡大学(Purdue University)数学系。现研究领域为不可压流体中偏微分方程如Navier--Stokes 方程组和向列型液晶流体中相关方程等的数学研究。已发表SCI论文60多篇。现主持国家自然科学基金面上项目1项。